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In this paper we investigate a modal calculus of quantum metalogic which is 
complete and sound with respect to a dialogic semantics. This calculus called 
Meff (Qeff) has three parts: one covering the formal metalogic, one reflecting the 
calculus of the object language, and one which is a link between object 
language and metalanguage. This third part is invariant with respect to a 
variation of the object language. 

1. INTRODUCTION 

In 1934 R. Carnap (1934) introduced the concept of necessity on the 
level of a metalanguage. O. Becket (1952) and later on P. Lorenzen 
(Lorenzen and Schwemmer, 1975) supplemented this idea using a "knowl- 
edge" W by which one can define a proposition A as necessary iff it can be 
deduced given any "knowledge" W. This approach uses a dialog semantics 
referring to the conditions under which propositions can be proved. The 
dialog semantics, first used to get an operational foundation of the calculus 
of the object language (Mittelstaedt, 1978; Lorenzen and Schwemmer, 
1975), is also useful on the level of the metalanguage (Mittelstaedt, 1979). 
Furthermore a dialog semantics can be established for the modal 
metapropositions, as will be shown further. 

The object language we will consider for the present is the language 
that must be used if one talks about quantum physical objects. The 
corresponding calculus is the effective quantum logic Qeff (Mittelstaedt, 
1978, p. 96) extended by the "factual beginnings" Aj < Bj which reflect the 
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empirical laws of quantum theory (Mittelstaedt, 1979). The extended 
calculus is denoted by ~:effr~<Y)- The restriction to the effective quantum logic 
in the following sections is not really important because our results are 
independent of the object language, as will be shown in Theorem 5.3. 

An elementary proposition of our metalanguage is a statement "the 
figure A ~< B is deducible in Qeff" denoted by Q~-~, A ~< B or A<<,B. By this 
definition the elementary metapropositions are proof definite (of. Mit- 
telstaedt, 1978, p. 49). If Q~-fW<A is true A is said to be "necessary with 
respect to W "  and we will write AwA. Other modalities and their illustra- 
tion in Hilbert space can be found in Mittelstaedt (1979). The proposition 
W contains our knowledge of the physical system we are talking about, i.e., 
its preparation. 

In Section 2 we build up compound metapropositions, e.g., 7iwAJ(W 
~ A  i, V~B/) at which X -/is a connection of the elementary metaproposi- 
tions W~A i and V~<Bj (i_= 1 . . . . .  r; j = 1 . . . . .  s; r, s E ~). The indexj  at the 
~f indicates that within A j there are only metajunctors 7~, V, ~ and the 
metanegation q but no metaquantifiers. (The more general case includ- 
ing quantifiers will not be considered here.) XwAJ(W~Ai, V~Bj) is 
called a modal metaproposition; if such a metaproposition is true, 
I will call AJ(W<~A t, V<~Bj) a necessary metaproposition [then I will write 
AJ(AAi, ~-Bj)] because the truth of A J is independent of the special object 
proposition W. 

But first of all we have to introduce a semantics for our metalanguage 
which gives us a concept of truth. This will be done in Sections 2 and 3 by 
considering dialogs about metapropositions. In Section 4 a tableaux calcu- 
lus is given which is complete and sound with respect to the dialog 
semantics. In Section 5 we will consider other calculi Mef f and Meff(Qeff ) 
that are proved to be complete and sound with respect to the tableaux 
calculus and that allow us to deduce all necessary metapropositions. 
Meff(Qeff ) will be called the "calculus of modal quantum metalogic." 

There are two remarkable results: 
(1) The calculus Meff(Qeff) consists of three parts: The first one 

reflects the object language, the second one yields the formally true 
metapropositions. The third one is a link between these two parts and is 
called the modal part, which makes it possible to use the "knowledge" of 
the object language on the level of the metalanguage; it is almost formally 
equivalent to the simplest axiomatic modal system T (cf. Hughes and 
Cresswell, 1968; Burghardt, 1979, p. 89). 

(2) The modal part of Meff(Qeff ) is independent of the object lan- 
guage, i.e., using different object calculi K we get modal metacalculi 
Meff(K ) that are different only with respect to the part reflecting the object 
language. 
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2. T H E  MATERIAL AND T H E  SEMIFORMAL METADIALOG 

The concept of a dialog can be introduced by f rame rules (Stachow, 
1978); furthermore some argument rules must be formulated in order to lay 
down the possibilities of attack and defense for compound propositions. 
The first argument rule, Ay(1), can be understood as a definition of the 
connectives of the metalanguage (Mittelstaedt, 1979; Lorenz, 1968) (see 
Table 1). By this rule a compound metaproposition can be reduced within 
a dialog until an elementary metaproposition is reached. Then we need the 
next argument rule, A,,(2) (see Table 2). An elementary metaproposition 
A<~B can be attacked by the question A<~B? (in a material metadialog), 
and the defense ~! consists of a deduction of the figure A < B  in the 
calculus of the object language. 

As in the object language (Stachow, 1976) we are only interested in 
finite dialogs. This restriction is performed by a third argument rule: 

Af(3) a) P is allowed to attack the same proposition of O at most n times. 
b) O is allowed to attack propositions of P at most once. O has to 

decide if he is going to defend against an attack by P or if he is 
going to attack. In case he defends he no longer has the right to 
attack; in case he attacks the respective defense is no longer 
possible. 

By the rules Ay(1), Am(2 ), Ay(3), and the frame rules the material 
metadialog with bound n is established. To characterize the availability of 

TABLE 1 

Possibilities Possibilities 
A / ( 1 )  Connectives of attack of defense 

a) A 7~B 17 X 
27 

b) A V B  ? A o r B  
c) A ~B A ff 
d) ~X X 

e) 7%X(x) n X(n) 
f) V ~.A( x ) ? A( n ) 

TABLE 2 

Elementary Possibi l i ty  Possibility 
Am(2 ) metaproposition of attack of defense 

~(=A~<B) ,~? ~! 



O's proposition an index (i) is assigned to them. According to rule Ay(3) 
each proposition obtains the availability n after it has been stated by O. If 
a proposition is attacked by P the availability reduces by one. As usual 
(Stachow, 1976) we define a metaproposition A to be (materially) true iff P 
has a strategy of success within a (material) dialog about A. 

There are compound metapropositions that can be defended success- 
fully in a material dialog irrespective of the elementary metapropositions 
contained in it. These propositions are called formally true, the set of which 
can be covered by the calculus of formal metalogic (Mittelstaedt, 1979). But 
in this calculus it is not possible to use the knowledge of the object 
language, viz., the true object propositions. For instance, the metaproposi- 
tion V<~A~V<~Ak/B cannot be deduced in the formal metalogic. On the 
other hand we are not interested in the special form of the object 
proposition A when we prove the truth of V<~A~V<~Ak/B, so the 
material dialog in which the opponent is obliged to defend V<~_A by using 
the special form of A is not useful (for our purpose). But if 0 is dispensed 
with the defense of his elementary metapropositions--which of course can 
be taken over by the proponent without being obliged to defend this 
proposition--we must be careful. We have to exclude that 0 asserts 
elementary metapropositions from which a contradiction, i.e., V~<A, can 
be deduced. These considerations lead to the following argument rules 
establishing [together with the frame rules and Ay(1) of course] the semifor- 
mal metadialog D s2 

A,(2)a) Elementary metapropositions of O are not attackable. 
ba) Elementary metapropositions of P which previously were asserted 

by O are not attackable. 
bb) In a position of a metadialog in which P finally has asserted an 

elementary metaproposition A ~ B  (not yet asserted by O) O can 
attack by asking A ~ B ? .  Let E : = { A i ~ B i }  be the set of all 
elementary metapropositions previously asserted by O. The de- 
fense against A <~B? is a deduction A 1 < B l . . . . .  Ar <~ B, .Q~ A < B 
in the calculus Qen of the object language. 

In Ay(3) we add: P is allowed to take over elementary metaproposi- 
tions of O at most n times. 

A,(4) In a position of a metadialog in which O has asserted the elemen- 
tary metapropositions A i ~ B  i (i--1 . . . . .  r) P is allowed to try to 
deduce A l < B 1 . . . . .  A,  <<, B, Q~.~ V< A. If he succeeds he has won the 
metadialog. 

In A,(2)bb) and A,(4) the syntactical completeness of Qe, (Stachow, 1978) 
is used by which it is possible to add a figure A ~< B to the calculus instead 
of adding all figures appearing in a deduction of A ~< B. 
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3. THE SEMIFORMAL DIALOG FOR MODAL 
METAPROPOSITIONS 

We specialize some rules of the semiformal metadialog for those cases 
in which a metadialog about modal metapropositions is performed. 

Step 1. Every metadialog about a modal metaproposition begins as 
shown in Table 3. P has a strategy of success for the modal metaproposi- 
tion ~wAJ(w~t~Ai, V ~ B j )  iff he has a strategy of success for  AJ(Wo~.di, 
V~Bi) without referring to the special form of W 0. So we can change the 
dialog rules in such a way that P makes his arguments for any W 0. In order 
to do so we need a lemma, the simple proof of which will not be given here 
(Mittelstaedt, 1979; Burghardt, 1979). (We will write again W instead of 
Wo.) 

Lemma 3.1. "'Theorem of Aristotle"." 
(a) V <~ A 1 . . . . .  V ~< A m ,  W <~ A m +  1 . . . . .  W <~ A p  

Q~,W o < B for all W 
f xV<Aa  . . . . .  V < A  m Q~,.,,V<Am+IA" ". A A p ~ B  

(b) V<A 1 ..... V<Am Q~,W<B for all W 
V < A  1 . . . . .  V < A  m Q~.V<B. 

(c) W<A,,,+I ..... W<.Ap Q~,W<B for all W 
~'~ Q~.V<Am+IA"" AAp-->B. 

Lemma 3.2. 
(a) V<A, V<B Q~V<AfX Q ~ A A B < A  
(b) W<A, W<B Q~-~ W < A  forall W 

f ~  Q~, A A B < A  

Using this lemma we get the following specialized form of the argument 
rules As(2)bb ) and As(4) [an exact reasoning for AT(4 ) can be found in 
Burghardt, 1979]: 

Am(2)bb) In a position of a metadialog in which P finally has asserted the 
elementary metaproposition W<~B (not yet asserted by O) O 
can attack by asking W~B?. Let ~ be the set of all elementary 
metapropositions previously asserted by O. The defense against 
W~B? is a deduction 
a )  V<~_A 1 . . . . .  V ~ < A  m Q ~ e t f V ~ ( A m + I A ' - -  AAp--->B) 

if E= (V~A1,.. . ,  V~Am, W<,.<A,,,+ l ..... W<Aj,}, 

TABLE 3 

0 P 

o. [ ] 7~w~:(W<~a~,V<Bj) 
1. Wo XJ(Wo <~,, v<sj) 
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A7(4) 

B) v < a ,  . . . . .  V<<.Am 
if E-- {V~A  1 . . . . .  V~A~} ,  

y) Q~,nV< (Am+l/k,' '" AAp--->B) 
if E-- (W~A,,+~ . . . . .  W~Ar} .  

be) If P has asserted V~B,  0 is allowed to attack by asking 
V~B?. The defense against this attack is a deduction of V< B 
in Q~ff. 

In a position of a metadialog in which O has asserted the elemen- 
tary metapropositions V ~ A  l .....  V<,.~.A,,,, W~A,,+ l .... .  W~A~,  P 
is a l lowed to try to deduce  A l / k  �9 �9 �9 /kA m < A or  
Am+l/~""/~Ap ~< A in Q~n- If he succeeds he wins the metadia- 
log. 

In a modal metaproposition W represents a knowledge which shall not be 
false. This leads to the following rule: 

Am(5) The player who asserts W ~ A  loses the metadialog. 

Step 2. In the material and in the semiformal metadialog the defense of 
the elementary metaproposition A<~B has to be performed outside of the 
metadialog, viz., within the calculus Qeff of the object language. The 
deduction of the respective figure A < B can be made by "reducing" A < B 
to a beginning of Qcff, i.e., the proponent uses the rules of Q~ff in the 
opposite direction. If a rule of Q~ff used by P has two premises O can 
choose the one by which P has to continue. This procedure- - le t  us call it a 
material reduction--is of course equivalent to the usual deduction starting 
with a beginning of the calculus. In order to translate this deduction into 
the metalanguage we introduce a calculus K which looks like Q~ff, but 
instead of A < B in Qeff we write V<~,A-->B. Transforming all the rules 
Qeff(1.1)-Q~n(5.3 ) (Mittelstaedt, 1978, p. 96) in this way we get the 
corresponding rules (Kl . I ) - (K5.3)  on the level of the metalanguage. Of 
course % is complete and sound with respect to Q~ff, i.e., 

AI <B 1 ..... A~ <Br Q~..A<B 

Furthermore this last assertion is equivalent to the metaproposition V~< 
(AI--->BI)7~... 7~V<,(Ar-->Br)~V~(A--~B ). So it is possible by means of 

to replace the material reduction by a procedure only using metapropo- 
sitions which we call "formal reduction." 
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All steps necessary to defend a metaproposition can now be done on 
the level of the metalanguage and our argument rules can be formulated as 
follows: 

A~(2)bb) ... The defense against the attack W<~B? consists in asserting 
the new initial argument 
a) V<~AIT~... 7~V<~A, ,~V<~(Am+IA. . .  AAp---~B) 

if E= ( V ~ A  l . . . . .  V<~Am, W<~Am+ 1 . . . . .  W<~Ap}, 
fl) V<~A~7~" �9 �9 7~V<~A,, ~ V ~ B  

if E-- ( V ~ A  l . . . . .  V~Am}  , 
7) V ~ ( A m + I A " "  AAp----~B) 

if ~= ( W ~ A m +  1 . . . . .  W ~ A p ) .  
bc) In a position of a metadialog in which P finally has asserted 

the elementary metaproposition V ~ B  (not yet asserted by O) 
O can attack by asking V~B? .  If V ~ B  is a premise of a rule 
of K, P can defend against V ~ B ?  by asserting a premise of 
this rule. If there are two premises O can choose the one by 
which P must continue the metadialog. If (K1.2) shall be used 
P can choose a proposition B, and then O chooses one of the 
premises. 

c) P is allowed to defend by bc) at most n times running. 

Arj(4) In a position of a metadialog in which O has asserted the elemen- 
tary metapropositions V ~ A  1 . . . . .  V<.~_A,,, W ~ A , , +  1 . . . .  , W<.~4p, P 
is allowed to continue by asserting the new initial argument 
V<~ ( A~ A . . .  AA,,-+A) or V~<(A,,+~A-. �9 AAp~A).  

The rule A,~(2)c) has been added for we are interested only in finite 
dialogs. This rule is taken into consideration by providing the arguments of 
P with an availability index (n). If O attacks an elementary metaproposi- 
tion V<~B (~) (g~(1 . . . . .  n}) and P defends using the rule A~(2)bc) then 
the new argument of P gets the index 0 ' -  1). 

The argument rules Ay(1), A~(2)a)-ba), A~(2)bb)-c), Ay(3), A~(4), 
A'(5) and the frame rules define the "'semiformal dialog for modal 
metapropositions with formal reduction '" D~ which covers a special domain 
of the semiformal metadialog D s. As mentioned above we have the 
following equivalence: 

P has a strategy of success in D~ for the modal metaproposition 
- - "  m 7~wA+(W<~Ai, V<~_B/) iff P has a strategy of success in D~j for the 

metaproposition A+(W<~Ai, V~ Bj). 

The dialog D~ is our starting point for finding a calculus by which all true 
modal metapropositions can be deduced. This will be done in the proceed- 
ing sections. 
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4. THE TABLEAUX CALCULUS OF MODAL QUANTUM 
METALOGIC 

4.1. The Tableaux Calculus ~,(D~).  Stachow (1976) introduced the 
formal representation of a dialog game and the concept of reduced positions 
of a dialog. Tableaux represent certain reduced positions by means of the 
bijective mapping 

where ~ denotes a system of metapropositions of O's, (tx) designates a 
respective system of availabilities, and furthermore F designates a potential 
argument�9 

The rules (1.1), (2.1)-(2.4), (3.1)-(3.4), (5�9 of q),(D~) establish 
the well-known intuitionistic tableaux calculus [cf. Lorenz, 1968; for the 
rules 6.1-6�9 in Lorenz, 1968, we use the notation (5.1)-(5.2)], e.g., 

(2.1) ~(~)II[X] and ~(")11[/~] ~ ~I<")IIAT~B(') 

The rules of the calculus • are covered by the corresponding tableaux 
(kl.1)-(k5.3), e.g., 

(k1.1) =l~ ~(")IJ V~(A-'~A) (~) 

Furthermore we have the following rules: 

(2.5.1) [IV<~A~7~... 7 ~ V ~ A m ~ V ~ ( A , , + ~ / ~ " "  /~A1,--)B) (n) 

:=~ ~(~) 

V ~ I  (n) 

V<~A,,, (") 
W ~ A  (n) 

, ~ - - m +  1 

W<.~4p (") W ~ B  (') 
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(2.5.2) 

V<~A,,(") l[ w<~(") 

(2.5.3) [I V~(A,.+, A . .  A G - ~ B )  (") :=v 7-I ( " ) 

WZA,.(:? 

W ~ A  e (") W<~B('O 

(5.3.1) I1 V~(A1 A ..o AAm -->A) (n) 

V<~A 1 (~) 

V~A,, ,  (') r 

(5.3.2) H V~<(A,, ,+IA-. .  AAp --->A) (') 
W~Am(+nl ) 

W<~A e (") F 

(6) 
=* 5(") F 

W<~A(') 

Theorem 4.1. Completeness and soundness of r D~ ) with respect to 
the dialog game. The metaproposition XJ(W~A~,  V~Bj)--- : A is 
true in the metadialog Dff with bound n iff there is a v E { 1 . . . . .  n} 
so that the tableau [I.~ ~) can be deduced in ~,(D~).  

Proof. For the completeness proof (which is performed by means of 
and induction) we show that every tableau corresponding to a reduced 
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position of success is deducible in O,(D~). We have the following possibili- 
ties: 

(1) A position of success is a final position of success, i.e., one of the 
following positions: 

(i) :i(,,) I 
~(~) 5(n) 

(ii) ~(,) ] 

W ~ A  (.) F 

Because of the rule A~(2)ba) O is not allowed to attack 
and therefore O has no subsequent move. The respective 
tableau is the deducible beginning (1.1) in ~ ( D ~ ) .  

(iii) ~5 (") [ V<~,A--)A (") 

O loses the dialog because of the rule Am(5). The 
respective tableau is the deducible beginning (6) in 
,~,( D'7 ). 

(ix) ~( - ) l  V<(AAmA__)A)(~) 
v~{1 ..... n) 

P asserts an elementary metapropo- 
sition which cannot be attacked by 
O because of the rule A~(2)bd). The 
respective tableaux are the deduc- 
ible beginnings within the l"ules (kl.1) 
-(k5.3). 

(2) A position of success is a member of the move class of P, i.e., 

~(,~) 

V<<,A~ (~) 

V~Am(n) 

W<Ap (') F 

Then at least one of the subsequent positions must be a position of success. 
(2.1) In case P defends one has to distinguish the following cases: 

(i) ~(~) I [ ~ ]  The successors are [ V ~ ( A I A " "  AAm--~A) (~), 

I V < ( A m + I A " "  AAp--)A) ('), and ~(~) t ~ ' ) .  
One of these must be a position of success. The 
respective tableaux are the premises of the rules (5.1) 
and (5.3). By assumption (within our induction) the 
tableau related to the position of success is deducible 
in 4)n(D~), and so is the conclusion of the respective 

f - -  

rule, viz., E(#)[I[A], deducible too. 
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(ii) ~(~) I [ iT, B] 

(iii) ~(~) [ [ ] 

The successors are ~(~) [ ~" ) ,  

I V ~ ( A ~ A . . .  AAm--)A) ("), 

[ V ~ ( A , , + I A - - . A A p - ~ A )  ("), and ~(P) [ B("). 
By the same arguments as above one gets the de- 
ducibility of ~(B)[[[A, B] using the rules (5.2) and 
(5.3). 

The only successors are 

[ V ~ ( A l A . . .  AA,,--)A) (~) and 

[ V~<(Am+IA""  AAp---)A) (~). Using the rules 

(5.3) one gets the deducibility of the tableau 

~(B)II[ ]. 

(2.2) In case P attacks cf. Lorenz (1968). 
(3) A position of success is a member of the move class of O, i.e., 

y~(,) 

V ~ A  1 (") 

V~A~ (") 

W<A (~) 

W~Ap (") O") 

which is not a final position. Then all subsequent positions must be 
positions of success. 

(3.1) C is a compound metaproposition A ~ B  AVB, A ~ B ,  qA, or the 
elementary metaproposition W ~ B  which does not occur in the left column 
~(~). The successors corresponding to deducible tableaux (by assumption 
within our induction) are positions the tableaux of which are the premises 
of the rules (2.1)-(2.5). Using one of these rules one gets the tableau 

~(~) I IU") .  _ 
(3.2) C is the elementary metaproposition V~B.  Then V< B must be 

deducible in Qeff and it is not a beginning (otherwise the position 

~(~) ] C(')  would be a final position). Because of the dialog rule A~(2)bc) 
the successors are the positions corresponding to the premises of the rules 
(k2.1), etc. These tableaux are deducible by assumption (for they are 
related to positions of success), and so is the conclusion E(P)[] V ~ B  (') of 
the respective rule deducible too. 



ss4 n ~ g ~ t  

For the soundness proof we show that every tableau deducible in 
~ , (D~)  corresponds to a position of success in the dialog game: 

(1) All the beginnings in ~ , (D~)  correspond to positions of success. 
(2) Ad rules (2.1)-(2.4), (3.1)-(3.4), and (5.1)-(5.2) cf. Lorenz (1968). 
In the following I use the words premise-position and conclusion- 

position for a position corresponding to a premise or to a conclusion, 
respectively, in a rule. Using this definition we have to show that all 
conclusion-positions are positions of success. 

(3) Ad rules (2.5.1)-(2.5.3): If W ~ B  occurs in the left column of the 
conclusion-position this position is a final position of success. Otherwise 
the premise-posit ion is the only possible successor. By assumption the 
premise-positions are positions of success. Therefore all successors of the 
conclusion-position are positions of success, and the conclusion-posit ion 
must be a position of success too. 

(4) Ad rule (5.3): The respective conclusion-position is a member of 
the move class of P. In order to be a position of success at least one 
successor must be a position of success. The respective premise-positions 
are indeed successors and therefore positions of success by assumption. 

(5) Ad rules (k2.1), etc.: Let us consider a certain rule; the conclu- 

sion-posit ion 5 (~) I V ~ D  (~) shall not be a final position (therefore/,4= 1). 
Hence the successors are the premise-positions of certain rules of (k2.1), 
etc. These positions are positions of success by assumption in our induc- 
tion, and therefore the conclusion-posit ion must be a position of success 
too. [] 

4.2. The Effective Tableaux Calculus c/,on(D~). In order to catch all 
modal metapropositions which are true in the semiformal dialog D~ 
irrespective of a special bound we have to take the union of all dialogs 
with bound n = 1,2 . . . .  and, respectively, the union of all tableaux calculi 
~ , (D~) .  The result is the effective tableau calculus ~eff(D~'~) which looks 
like ~n(D~'~) except that availability indices appear not any longer. 

Theorem 4.2. Completeness and_soundness of ~eff(D~) with respect 
to U.~_Iq~.(D~'~). A tableau [IA can be deduced in the calculus 
@~ff(Dj7) iff there are an n E N  and a r E ( 1  . . . .  , n) so that the 
tableau [I ~,~) can be deduced in @.(Dj~). 

The simple proof is analogous to the one in Lorenz (1968). 

5. THE P R O P O S I T I O N A L  CALCULUS OF MODAL 
QUANTUM METALOGIC 

5.1. The Calculus Ma~: The figures A ~ B  of the calculus ~rr corre- 
spond to metaimplications A ~ B .  The rules of this calculus can be handled 
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easier than those of a tableaux calculus; therefore the modal metaproposi- 
tions which are true with respect to the semiformal dialog Dj~ can be 
deduced in a (relative) very simple way. The figures deducible in Mar are 
expressions of the form A_<-B at which A and B are metapropositions 
AJ(W~A i, V~Bj) with object propositions A i and Bj, the constant V of the 
object language (Mittelstaedt, 1979,_p. 89), and a variable W for an object 
proposition. Furthermore _4 and B maybe are the metaverum Y (or the 
metafalsurn 7i) defined by: .4~<V (or K<.4,  respectively) for all 
metapropositions A~. 

The rules of Mef f including the beginnings consist of expressions A < B 
at which -4 and B either are variables for a metaproposition A--)(W<A V< 
Bj) with fixed propositions A i and Bj o r  have the form A-'(W<,.%A~, V<,~Bj) 
with variables Ai, Bj for propositions of the object language. In any case, 
performing a deduction in Mefr the place of the variable W is not occupied 
by a fixed proposition. Remember that we are interested only in modal 
metapropositions which are true for all W! 

The rules (1.1)-(5.2) of M,f, are the well-known intuitionistic logic 
(Stachow, 1978), e.g., 

(1.1)=,, A<-_A 

(1.2) A<B and B<=C:~A<=C 

The calculus K is reflected within Mar by the rules (Ml.1)-(M5.3), e.g., 

(Ml.1)=t, V<-__ V~(A-->A) 

(M1.2) V<=V<~(A-->B) and 

Furthermore we have the rules 

(M0.1) :=~ W~<A<K 

(M0.3):=~ W<~( A--> B ) <-_ W~A ~ W<<,B 

(M0.5)=, W<_,AT~W<,B < W<~(AAB) 

(M0.11)=~ V<,A<= W<,A 

(M0.13)=~ V~(A.-->B)<= V<~A~V~B 

(M0.15)=,, V<~AT~V~B < V ~ ( A A B )  

71< v ~ (  B-->c) ::. v <  V<( A-->C) 

Lemma 5.1. The following rules are deducible in May: 

(R) 

(4.2') 

(MO.7) 

(MO.17) 

A <B ~ Y < A ~ B  

C<_A~B =~, A7~C<=B 

2 < W < ( A ~ B )  =,, V<__ ( W < A ~ W ~ B )  

7t< V<( A ~ B )  =,, 71<-_ (V<.A~V<B)  
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Proof 

ad (R): "==~" A < B =o AT~V <=B 

=r V < A ~ B  

"r Y < A ~ B  =. ~7~y < ~ 

~T< V (definition of L0 =~ A <AT~V 

(1), (2), (1.2) =,, A =<B 

ad (4.2'): premise=~AT~C<A~B 

(1.1), (2.1), (1.2) 

(4.2) 

(4.2') 

(1.1), (2.3) 

(2.2), (1.2) 

Burglmrdt 

(1) 

(2) 

=*AT~C<A7~(A~B) (1.1), (2.3), (1.2) 

=~A;~C<B (4.1), (1.2) 

ad (M0.7): Use (M0.3) and (1.2). 

ad (M0.17): Use (M0.13) and (1.2). II 

Theorem 5.1. Completeness and soundness of Mcff with respect to 
-- m ~af(D~).  A tableau II A can be deduced in q~ff(Djy) iff the figure 

V < A  can be deduced in )Q~ff. 

Proof For the completeness proof we consider the following mapping: 

g3: ( tableaux of q~ff (D~) ) -+( f igures  of h,~t ,f) 

We have to prove tha t  all the rules of +r (D2'~) transformed by means of ga 
are deducible in Mcf r 

(1) ad (1.1)-(5.2.2): cf. Stachow (1978). 
(2) ad (2.5.1): Proposition: The rule 

V ~-~ V ~ A 1 7 ~ "  " ~ ~r ~ A m  ~ l+r~( Am+ 1 / ~ " " / ~ A p  --->B ) 

: ~  . ~ ITkV~AI~"  �9 7~V~AmT~W<,..~,Am+ 17~" "" ~ W ~ A p  ~-~ W ~ B  

is deducible in 3~t ff. 
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Proof  

(MO.5): 

(2.2): 

W<~Am+ ,7~ . . .  7 ~ W ~ A p  <-_ W < , ( A m + I A " "  AAp) (1) 

~ 7 ~ V ~ A 1 7 ~ "  " " 7 ~ V ~ A  m ~ V~A17~.  . . 7~V~,.~4 m (2) 

by (1), (2), (2.1), (2.2), (1.2): 

~I7~ V~A17~.  . . 7~ V ~ A , , 7 ~  W ~ A m +  17~" " 7~ W ~ A p  

<-_ V ~ A 1 7 ~ . . .  7 ~ V < , A m 7 ~ W ~ ( A m + ~ A " "  AAp) (3) 

premise =, V ~ A 1 7 ~ . . .  7~V<~A,~ < V<~(Am+ l A " "  A A p - + B )  (R) 

==~ V~,~,AIT~" " 7~ V<-~Am ~ W ~ , (  Am+ i A " "  AAp--+B)(M0.11),(1.2) 

==~ V~,~A17~" " 7~V~Am ~ W ~ (  Am+ l A "  " AAp)==~W~,~ B)  (M0.3) 

=, V~A17~.  . . 7 ~ V ~ A m 7 ~ W ~ ( A , , + I A . . .  AAp) < W ~ B  (4.2') (4) 

=, proposition [by (3), (4), (1.2)] [] 

ad (2.5.2): Proposition: The rule 

V <= V~A17~.  . . 7~ V ~ A  m ~ V <  B=~ ~IT~ V<,AI7~. . . 7~ V ~ A  m ~ W ~ B  

is deducible in J~ceff- 

Proof 

premise =* V~A17~.  �9 �9 7~V~Am < V ~ B  (R) 

=, 57~ V ~ A I 7 ~ .  . . 7~ V ~ A  m < V ~ B  (2.2), (1.2) 

=, YI7~V~A~7~. . . 7~V<~A m < W ~ B  (M0.11), (1.2) [] 

ad (2.5.3): Proposition: The rule 

v <  V<~( A,,+ ~ A'- -  AAp~B) =. hT~W<~A,,+ ~7~. . . 7~ W<~Ap < W ~ B  

is deducible in Meal. 



ass n ~ ' t  

Proof 

premise =* V<= W<~( A,n + 1 A "  " AAp---)B) 

=, V <  W<~(A,n + 1 A " "  AAp)~  W<~B 

=* W~(Xm+~A- --/hA,)<= W ~ B  

=, W~A,,,+ IT~. �9 �9 7~ W<,~Ap < W ~ B  

=, proposition [by (2.2), (1.2)] 

(M0.11), (1.2) 

(M0.7) 

(R) 

(M0.5), (1.2) 

[] 

(4) ad (5.3.1): Proposition: The rule 

3L<-_ V~(A~  A " "  AAm --->A) = ~  ~ V ~ A I 7 ~ "  �9 �9 7~V~,~A m ~-__C 

is deducible in Met f with any metaproposition C. 

Proof 

premise =0 •< V ~ ( A  1 A " "  AA,.)~V~<A (M0.17) 

V~-,(AI A"" AA,.) <= V~A (R) 

::, V ~ ( A , A .  . .  AAm)<= W ~ A  (M0.11), (1.2) 

=, V ~ ( A I A . . .  AAm)<=~; (M0.1), (1.2) 

=* V~(A~ A " "  AAm) < C definition of K, (1.2) (1) 

(2.2): .~7~V~A17~... 7~V~A m < V<_,A17~... 7~V~A m 

=0 ~IT~V~A17~"" 7 ~ V ~ A  m ~ V ~ ( A 1 A "  �9 �9 AA,,) (M0.15), (1.2) 

=~ proposition [by (1), (1.2)] []  

ad (5.3.2): Proposition: The rule 

V__< V~(Am+~A. �9 �9 AAr-->A) =* .~7~W~Am+~7~"" 7~W~_Ap <=C 

is deducible in A~fdr with any metaproposition C. 
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Proof 

premise =~ 

=~ 

Y_~ W~(Am+I/~" " AAp--)A) 

~-~-~ W<<--,( Am+ 1/~''" AAp)~ W<,A 

W~<(A,,+IA. �9 �9 AAp)__ < W~<A 

W~(Am+IA"" AAp)<=~ (MO.1), (1.2) 

W~(A,,+l/k. �9 �9 definition of 7~, (1.2) 

(2.2): 

(M0.11), (1.2) 

(M0.7) 

(R) 

859 

A < C is deducible in M, ff. 

Proof 

(M0.1): W~<A <3~ 

=. ~7~W~<A <7~ 

definition of 7~: 7i < C 

By (1), (2), and (1.2) we get the proposition. 

(6 )  ad (kl.1), etc.: 
they are deducible. 

For the soundness 

g4 : (figures 

A<=B 

X<= v -+ 

X<=7~ --, 

v<=X -+ 

S<__X -+ 

at which C is any metaproposition. 

(2.2), (1.1) (1) 

(2) 

[]  

The rules transformed by g3 are rules in/tier f, so 

proof consider the mapping 

of &ff} ---> {tableaux of (/~eff (Ds~)} 

---, All[B] 

a II C ~ C  

klt  

IIX 

C 7 ~ C I I A  

< < W <  A "-- AAp)(M0.5), (1.2) =*'~I7~W<,Am+IT~"'7~W,,~Ap= ,~( m+aA 

=,, proposition [by (1), (1.2)] [] 

(5) ad (6): Proposition: For any metaproposition C the figure ~7~W~< 

(1) 
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We have to show that the rules of Meff transformed by g4 are 
deducible in ~eff(D~). 

(1) ad (1.1)-(5.2): cf. Stachow (1978). 
(2) ad (M0.1): W~</k[[[ ] is deducible in 4,ar(D~) for it is a begin- 

ning [(6) with empty ~]. 
(3) ad (M0.3): Proposition: W~(A~B)I[[W<~A~W~B ] is deducible 

in 0af (D~). 

Proof. 
(1.7): 

=~ W~(A---~B) I I 
W <~A W <~A 

= a  W~( A--)B) (5.1) 
W~A [W~B] 

=~ W~(A---)B)IIW~A~W~B (2.3) 

=* proposition [by (5.1)] [] 

(4) ad (MO.5): Proposition: W~A?~W~B ][[W~AAB] is deducible in 

I[ V<~[(A--)B)AAI--)B 

(2.5.3) 

Oo.( n~). 

Proof. 
(1.2): II V~(  A A B-~A AB ) 

W<~A (2.5) 
W~B W~AAB 

W~A 
w<~a II[W~<AAB] 

=~ W~A 
W<~AT~W~B I 
W~B [W~AAB] 

W~Aw~AT~W~B [W~AAB] 

::0 w~AW~AT~W~B I[W~A7~B] 

=~ W<~AT~ W<~B I[[W~AT~B ] 

(5.1) 

(Arguments within 
a column can be 
exchanged.) 

0.1.2) 

(3.1.1) [] 
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(5) ad (M0.11): Proposition: V~A [[[W~<A] is deducible in @eff(D~). 

Proof 

(1.1): V~AI[V~A 

=~ V~A][[V<~A] (5.1) 

=* 1[ V<~A ~ V~A (2.3) 

=, V~A 11W~A (2.5.2) 

=. V<~A[I[W<~_A] (5.1) [] 

(6) ad (M0.13): Proposition: V~(A-->B)I[[V~V~B ] is deducible 
in ~r (Dj'~). 

Proof 

(1.1): V~(A--,B) ~ V<~(A-,B) 
V<~A V<,.~A V < ~ A  V<~(V~A) (1) 

(1.1): V<,(A--,B) (2) 
V~A V<~(A-->B) 

V~A V~ (V-->B) 

=. V~(A~B)[ V<~B 
V<~A 

etc. like in (3). [] 

(7) ad (M0.15): Proposition: V~A7~V~BI[[V~(AAB)] is deducible 
in q~ff (D~'~). 

v~<A I 
V~B V~A 

V<~A [ 
V~B V~(V-->A) 

=~, V~A V~(V-->A/~B) (k2.3) V~B 

V~A IIv<(AAB) V~B 

Proof 

(1.1): 

= ~  

and 

and 

V<~A 
V<,~B V<.~B 

V~A 
V<~B V<_~(V-->B) 

etc. like in (4). []  
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(8) ad (MI.1): Proposition: II V<~(A--~A) is deducible in Oaf(D~). 

Proof. tl V<~(A-->A) is a beginning of Oae(Dff), viz., (kl.1) with empty 
~. [] 

ad (M1.2): Proposition: The rule IIV~(A-->B) and ]IV<,(B-->C) 
=~ IIV<(A~C) is deducible in r 

Proof. This is a rule in ~beff (Ds~), viz., (kl.2) with empty X. [] 

ad (M2.1)-(M5.3): like above with (k2.1), etc. II 

5.2. The Calculus Mat(Qen ). In order to get a modal calculus in the 
usual notation (Hughes, 1968) we introduce the symbol "A" instead of 
"W~<" by which we want to emphasize that the respective figure is true for 
any 1u the truth does not depend on a special W 0. Also "V~<" is replaced 
by the symbol "~-" as an abbreviation for "~r" with the calculus K of the 
object language. (Remember that "V<~A" was introduced as an abbrevia- 
tion for Q~..) 

The calculus Meff(Qaf) reads as follows: 

(1.1)-(5.2) are the same rules like those in 3Car 

(M0.1) =, AA<__7~ 

(M0.3) =~ A(A-oB)<AA~AB 

(M0.5) =* AA7~AB <=A(AAB) 

(M0.11) =, bA<=AA 

(MO.13) =,, F(A-->B) < FA~bB 

(M0.15) =*, ~-A7%B < ~-(AAB) 

Furthermore we have again the beginnings and rules reflecting the 
calculus K or the object language, respectively, e.g. 

(MI.1) =0 ~g< ~(A-)A) 

(M1.2) ~ <  [-(A->B) and V< f-(B---->C) =,, 3[_s ~-(A--->C) 

Theorem 5.2. Completeness and soundness of Mcff(Qeff) with respect 
to friar. The figure V<=AJ(W<,~A,, V~Bj) can be deduced in Men 
iff the figure V<AJ(AAi, FBj) can be deduced in Maf(Qar ). 



Modal Quantum Logic and Its Dialogic Foundatioa 863 

Proof Because W is a variable the place of which cannot be occupied 
by a fixed object proposition (as mentioned above) the following mapping 
gs is bijective: 

gs: {figures of 2Qaf ) --> {figures of M~u(Qaf)) 

A--J(W~Ai, V~,~Bj) --> AJ(AAi, ]-Bj) 

Therefore the completeness- and soundness proof is trivial. 

Theorem 5.3. 
in Maf(Qaf): 

(a) The following figures and rules can be deduced 

(R) 

(MO.2) 

(MO.4) 

(MO.5') 

(MO.6) 

(MO.7) 

(MO.8) 

(MO.9) 

(M0.10) 

(MO. 11') 

(MO.12) 

2<X=~ g o  A<B 

2<aV 

AA~AAB<A(AVB) 

A(AAB) < AA7~AB 

V=<A(A-->B) ==~ 2 < A A ~ A B  

2 < A A ~ A B  =~ N<A(AVB)  

Y<=AA7~AB • Y=<A(AAB) 

2_-<A(--~ A) =), 2_- < q~A 

2__ < ~-A =~ V_-<aA 

Y=<- ~-V 

(b) The following rules are admissible in Men(Qaf): 

(Zl) V<zXA =,, V< ~A 

(Z2) V< (~A~AB) =,, V<A(A~B) 

(A) V < (AA7~AB~AC) ~ ,  Y ~  F(AAB-->C) 

(A) is the formulation of the "theorem of Aristotle" within the 
metalogical calculus Maf(Qaf ). A proof of the above assertions will not be 
given here. Burghardt (1979). 

The first part of the calculus Men (Qaf) consists of the rules (1.1)-(5.2) 
that establish the intuitionistic calculus of formal metalogie already men- 
tioned by Mittelstaedt (1979). Within this calculus all metaproposifions 
can be deduced which are true without reference to the object language, 
e.g., AA7~qbB~<AA~AC. It is obvious that the formal metalogic is in- 
variant if one changes the object language. Another part of Maf(Qaf ) 
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covers the rules (Ml.1)-(M5.3) reflecting the object language. By means of 
this part a deduction of a figure in the calculus of the object language can 
be performed on the level of the metalanguage. If we change the object 
language, of course, the respective rules of (MI.1)-(M5.3) will be changed 
in the same way too. For example, taking the intuitionistic logic Lee f as 
representing our object language the rules (M4.2)-(M4.4) are to be re- 
placed by 

(M4.2") V<= ~(AAB--~C) =~ V~  F-(B---~(A-~C)) 

and instead of (M5.2)-(M5.3) we have 

(M5.2") Y<  F-(AAB--~A) =*, ~_-< F-(B---~-n A) 

Using ~af~(f) instead of Qoff as the object language the factual beginnings 
would be taken into account by the new beginnings V< ~-(Ai---~Bz) in 
Ma,(Q~s 

The third part of Mar(Q,ff) is called the modalpart and contains the 
remaining rules (M0.1), (M0.3), (M0.5), (M0.11), (M0.13), and (M0.15), 
which establish the connection between the part representing the object 
language and the formal metalogic. Only by means of the modal part is it 
possible to use the knowledge of the object language in the deduction of a 
(nonelementary) metaproposition. Using the deduced rule (M0.11) and the 
definition of N the first rule of the modal part, viz., (M0.1), yields the 
logical equivalence of the "metafalsum" N and the "object falsum" A. 
Analogously the equivalence of the "metaverum" N and the "objectverum" 
V is established by (M0.2) and (M0.12). 

Finally let us prove an interesting result concerning the variation of 
the modal part if the object language is changed. We will concentrate on 
the calculi K (representing the object language) founded by a dialogic 
semantics: Q~ff (effective quantum logic), Q [full quantum logic 
(Mittelstaedt, 1978)], Lef t (intuitionistic logic), L (classical logic), and the 
respective extensions o(Y) Q(f), L (f) L (f) including the factual beginnings. ~ e f f  , e f f  ' 

The mutual relations of these calculi form a Boolean lattice, as shown in 
Figure 1. The lattice relation K l ~</(?2, e.g., Qaf ~< Lar, means that every 
figure deducible in K 1 is also deducible in K 2. 

Theorem 5.4. Invariance of the modal part of Maf(Qaf ). For every 
calculus K of the above-mentioned calculi with a dialogic founda- 
tion the modal part of the respective metalogical calculus Mar(K ) 
is the same as the one in Maf(QaO. 

Proof First it is necessary to clarify one special aspect. Of course if we 
change the object language we would be able to change in an appropriate 
manner only that part of Maf(Qaf ) reflecting the object language and to 
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L(fl 

Q(i] 

Q 

Qeff 

L(9 elf 

Leff 

Fig. 1 

say, "Well, this is our new metalogic." Doing so we would construct the 
metacalculus Meff(K ) ad hoe. But this is not the way to get a logical 
calculus we are interested in! We are interested in calculi with a dialogic 
semantics, and therefore we have to ask, "If we consider a calculus K 
representing the object language what changes have to be made within the 
rules of the metadialog and what conclusions these changes yield with 
respect to the calculus Moll(K)?" 

(i) Changes of the rules of D~: The frame rules and the argument rules 
Af(1) and AI(3) are independent of the fact that we consider a recta- 
language. A~(2) depends on the object language only as far as in part bb) 
the deductions are performed in Q~ff. Using another calculus K instead of 
Qeff the rule A~(2) is preserved except that the deductions have to be made 
by means of K. Of course we assume that V~< A is not deducible in K. 
Therefore the rule A~(4) is preserved too except that again the deductions 
must be performed by means of K. 

(ii) Changes of the rules of D~: Am(5) was founded outside of the 
dialog, and therefore this rule is preserved if we change the object lan- 
guage. For the transition from A~(2) to A~(2) we needed the "generalized 
theorem of Aristotle," the proof of which only uses rules of Q~ff corre- 
sponding to lattice properties (cf. Mittelstaedt, 1978). These rules also 
appear in the calculi K mentioned above, and the generalized theorem of 
Aristotle can be proved for these calculi. The transition from A~(4) to 
A~(4) needed a lemma proved by using the completeness and soundness 
of Qeff with respect to a dialogic semantics. But the calculi K mentioned 
above have such a dialogic semantics too and a respective lemma can be 
proved. 
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So we have the following result: If we change the object language the 
rules of D~ are modified only as far as one has to change K,  respectively. 

(iii) Changes in the proofs of the Theorems 4.1, 4.2, 5.1, and 5.2: In 
the completeness- and soundness proof of the tableaux calculus the calcu- 
lus K (or K, respectively) of the object language only has been used for 
establishing the tableaux rules (1.2)-(1.10) and (4.0)-(4.9) which reflect K 
equivalently. Concerning Meft we must distinguish completeness and 
soundness: 

m (a) In order to get a calculus Meff complete with respect to ~ff(D~s ) 
and with respect to K (instead of Qoff) it is not necessary to change the 
modal part of M~ff. For we need the object language only for establishing 
the rules (1.1)-(M5.3). 

(fl) In the soundness proof of the modal part of A~rff only some rules 
of the tableaux calculus were needed which reflect the transitivity, the 
supremum property, and the properties of V which are also valid within 
the above mentioned calculi K. Of course the transition from Melt to 
Meff(Qeff ) or  Mef t (K)  is only a formal one and is therefore independent of 
the object language. 
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